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Abstract

This analysis deals with free vibrations of a rectangular plate with a side crack by using the famous Ritz method with

special displacement functions. To appropriately describe the stress singularities at the crack tip and show the

discontinuities of displacement and slope crossing the crack, previously used corner functions, as well as a new set of

functions, are added to the well known admissible functions consisting of regular polynomials. Comprehensive

convergence studies on the vibrations of simply supported rectangular plates with horizontal cracks at the symmetry axis

are carried out and show that both the corner functions and the proposed new set of functions indeed accelerate the

convergence of numerical solutions. Furthermore, the new set of functions is found to be particularly capable in improving

convergence of solutions, especially when there is a large crack. Convergence studies also demonstrate that the present

approach gives more accurate results than previously published approaches using the Ritz method combined with various

domain composition techniques. Finally, the present approach is applied to investigate the effects of location, length and

orientation of side cracks on the free vibration frequencies and mode shapes of simply supported and completely free

square plates with side cracks, including cracks which are not along a symmetry axis, are skewed. Most of the results

shown are novel.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The flat plate is a very common component in engineering practices and has been extensively used in civil,
mechanical and aerospace structures, such as concrete floor slabs and rudimentary surfaces for aircraft and
guided missiles. The literature of free vibrations of plates is vast. Leissa [1] described about 500 publications
which appeared before 1966, and more than 1500 papers have been published since then. Relatively few
published results are available for cracked rectangular plates, and most of them considered plates with simply
supported boundary conditions at all sides or at two opposite sides. Because exact analytical solutions exist for
such plates with no crack, semi-analytical solutions can be constructed for such plates with cracks along a
straight line perpendicular to the simply supported edges.
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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To investigate the vibrations of simply supported rectangular plates with cracks, Lynn and Kumbasar [2]
used Green’s functions to represent the transverse displacements of the plates, resulting in homogeneous
Fredholm integral equations of the first kind, while Stahl and Keer [3] formulated such problems as dual series
equations which reduced to homogeneous Fredholm integral equations of the second kind. Aggarwala and
Ariel [4] applied Stahl and Keer’s approach to analyze the vibration of a plate with various crack
configurations along its symmetry axes. Neku [5] modified Lynn and Kumbasar’s approach [2] by establishing
the needed Green’s functions via Levy’s form of solution. Solecki [6] constructed a solution for vibrations of a
cracked plate by using the Navier form of solution, along with finite Fourier transformation of discontinuous
functions for the displacement and slope across the crack. Recently, Khadem and Rezaee [7] used so-called
modified comparison functions constructed from Levy’s solution as the admissible functions of the Ritz
method to analyze a simply supported rectangular plate with a crack having an arbitrary length, depth and
location parallel to one side of the plate. It should be noted that the approach of Khadem and Rezaee [7] can
only be applied to deal with the rectangular plates with two opposite edges simply supported because of their
special way of constructing admissible functions. Hirano and Okazaki [8] also developed solutions for
vibrations of cracked rectangular plates with two opposite edges simply supported by utilizing Levy’s form of
solution and further matching the boundary conditions by means of a weighted residual method.

To consider the vibrations of a cracked rectangular plate with arbitrary boundary conditions, a numerical
method has to be used. Both the finite element method and Ritz method have been often used. Qian et al. [9]
developed a finite element solution by deriving the stiffness matrix for an element including the crack tip from
the integration of the stress intensity factor. Krawczuk [10] proposed a solution similar to that of Qian et al.
[9], except that the stiffness matrix for an element including the crack tip was expressed in a closed form. Yuan
and Dickinson [11] decomposed a rectangular plate into several domains and introduced artificial springs at
the interconnecting boundaries between the domains so that the Ritz method with regular admissible
functions can be applied to find the solutions. Similar to the approach used by Yuan and Dickinson [11], Liew
et al. [12] required the continuities of displacement and slope in a sense of integration along the
interconnecting boundaries. In the approach of Liew et al. [12], the continuities of displacement and slope are
not satisfied at every point along the interconnecting boundaries. Notably, the solutions of Yuan and
Dickinson [11] and Liew et al. [12] destroy the good characteristics of providing upper-bound solutions for
vibration frequencies, normally associated with the Ritz method.

In the above-mentioned literature, the solutions, except for the finite element solutions, by no means
considered the characteristic of the stress singularities at the crack tip. The present work uses the well known
Ritz method, considering also the stress singularities, to investigate the vibrations of side-cracked rectangular
thin plates. The Ritz method is very suitable for solving the present problems because the geometry of plate
under consideration is simple, so that the area integration required in the Ritz method is easy to set up.

The admissible functions to be used for solving the present problems include two sets of functions. One set is
the well-known regular polynomials, which form a mathematically complete set of functions if an infinite
number of terms are used. The other set of functions supplements the polynomials to appropriately describe
the stress singularity behavior at the crack tip, as well as the possible discontinuities of displacement and slope
across the crack. Since a crack is a special case of a V-notch, the asymptotic solutions (or corner functions)
derived by Williams [13] would seem to be good candidates for this, according to the authors’ experiences in
studying vibrations of a circular plate with V-notch [14]. Kim and Jung [15] also applied this methodology to
investigate the vibrations of rhombic plates with V-notches. However, this work will demonstrate that using
Williams’ asymptotic solutions and regular polynomials as admissible functions does not yield quickly
convergent solutions for a plate with a large side crack.

To remedy the mentioned problem, the present work proposes another set of functions to replace the corner
functions to accelerate better the convergence of the numerical solutions. This set of functions is similar to the
corner functions and also appropriately describes the behaviors of stress singularities at the crack tip and show
the discontinuities of displacement and slope crossing the crack, which are characteristics of a true solution.
The advantages of the proposed set of functions over the set of corner functions are demonstrated through
comprehensive convergence studies for natural frequencies of a simply supported rectangular plate having a
horizontal side crack with different lengths. The present numerical results are compared with the published
results and show better accuracy than those obtained by the Ritz method combining with different domain
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decomposition techniques (i.e., Refs. [11,12]). Finally, the present approach is applied to investigate the effects
of location, length and orientation of side crack on the vibration behavior of a simply supported or a
completely free square plate with a side crack. Numerical results are presented for the frequencies and nodal
patterns, most of which have not been seen in the previous literature.

2. Methodology

The plate under consideration is a rectangular plate with a side crack as shown in Fig. 1. The well-known
Ritz method is applied to determine the natural frequencies of such plate based on the classical plate theory. In
the Ritz method, the maximum strain energy (Vmax) and the maximum kinetic energy (Tmax) for a plate
vibrating harmonically with amplitude W(x,y) and circular frequency o are

Vmax ¼
D

2

Z Z
A

ðW ;xx þW ;yyÞ
2
� 2ð1� uÞðW ;xxW ;yy � ðW ;xyÞ

2
ÞdA, (1a)

Tmax ¼
o2rh

2

Z Z
A

W 2 dA, (1b)

where D, u, h, and r are the flexural rigidity of the plate, Poisson’s ratio, plate thickness, and mass per unit
volume, respectively; and the subscript comma denotes partial differentiation with respect to the coordinate
defined by the variable after the comma. The vibration frequencies of the plate are obtained by minimizing the
energy functional

P ¼ Vmax � Tmax. (2)

The admissible functions of the Ritz method have to satisfy the essential boundary conditions (or geometric
boundary conditions) of the problem under consideration. For a rectangular plate with a side crack as shown
in Fig. 1, the admissible functions for the transverse displacement are assumed as the sum of two sets of
functions:

W ðx; yÞ ¼ xlymðx� aÞnðy� bÞq½W pðx; yÞ þW cðr; yÞ�, (3)

where the function before the brackets is inserted to satisfy the geometric boundary conditions along x ¼ 0,
x ¼ a, y ¼ 0, and y ¼ b; Wp(x,y) consists of algebraic polynomials and is expressed as

XI

i¼1;2

XJ

j¼1;2

aijx
i�1yj�1, (4)

which forms a mathematically complete set of functions if an infinite number of terms are used; Wc(r,y) is used
to supplement Wp(x,y) appropriately describing the important behaviors of the true solutions of W(x,y).
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Fig. 1. Dimensions and coordinates for a side-cracked plate.
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When considering the vibrations of a rectangular plate with a side crack, one easily sees that the
true solutions should have the following properties: (a) proper stress singularities at the crack tip,
(b) discontinuities of displacement and slope across the crack. Obviously, these properties cannot be
accurately described by Wp(x,y) in Eq. (4). Since a side crack can be treated as a special case of V-notch,
Williams’ asymptotic solutions [13] seem to be good candidates for Wc(r,y) according to the authors’
experiences [14].

Following the solution procedure given in Williams [13], one can find the asymptotic solutions (i.e., corner
functions) for a crack with free boundary conditions along its two sides,

W nSðr; yÞ ¼ rlnþ1
lnð1� uÞ þ 3þ u
ðln þ 1Þðu� 1Þ

cosðln þ 1Þyþ cosðln � 1Þy
� �

, (5a)

W nAðr; yÞ ¼ rlnþ1 �
�lnð1� uÞ þ 3þ u
ðln þ 1Þðu� 1Þ

sinðln þ 1Þyþ sinðln � 1Þy
� �

, (5b)

where WnS and WnA are symmetric and antisymmetric corner functions, respectively; the (r,y) coordinate
system is defined as shown in Fig. 1, its origin at the tip of crack, and �ppypp; ln is the characteristic value
of Willliams’ asymptotic solution. In Eqs. (5), ln ¼ (2n�1)/2 and n ¼ 1,2,3,y . These corner functions
accurately describe the singular behaviors near the tip of the crack and also satisfy the natural boundary
conditions (namely, zero moment and effective shear force along the crack). Consequently, one can set

W cðr; yÞ ¼
XN1

n¼1;2

bnW nSðr; yÞ þ
XN2

n¼1;2

cnW nAðr; yÞ, (6)

where bn and cn are arbitrary constants. Notably, in Williams’ original asymptotic solutions, ln can be an
integer. However, integer ln are not used here because the resulting corner functions can be exactly expanded
by finite terms of polynomials, which are already present in Eq. (4).

Another set of functions is also proposed for Wc(r,y) herein, namely,

W cðr; yÞ ¼
XN1

n¼1

Xn

l¼0

Bnlr
ð2nþ1Þ=2 cos

2l þ 1

2
yþ

XN2

n¼1

Xn

l¼0

Cnlr
ð2nþ1Þ=2 sin

2l þ 1

2
y. (7)

The purpose to propose Eq. (7) is to remedy certain shortcomings resulting from using Eqs. (5) and (6), which
will become clear in Section 3 of this work. Notably, Wc(r,y) in Eqs. (6) and (7) are linear combinations of the
following two sets of functions, respectively,

rð2nþ1Þ=2 cos
2l þ 1

2

����
����y and rð2nþ1Þ=2 sin

2l þ 1

2

����
����yjl ¼ n or l ¼ n� 2 and n ¼ 1; 2; 3; . . .

� �
, (8)

rð2nþ1Þ=2 cos
2l þ 1

2

����
����y and rð2nþ1Þ=2 sin

2l þ 1

2

����
����yjl ¼ 0; 1; 2; . . . ; n and n ¼ 1; 2; 3; . . .

� �
. (9)

Comparison of Eqs. (8) and (9) reveals that the set of functions in Eq. (9) includes that of Eq. (8). Because ln in
Eqs. (5) and (2l+1)/2 in Eq. (7) are not integers, the sine terms in these equations are not continuous at
y ¼7p, while the cosine terms yield a discontinuity of circumferential slope (qW c=qy) at y ¼7p.

For simplicity, N1 and N2 in Eq. (6) are set equal to N, and N1 and N2 in Eq. (7) are set equal to N in the
following computations. Substituting Eqs. (3)–(6) into Eqs. (1) and (2) and minimizing the functional P with
respect to undetermined coefficients aij, bn and cn yields IJ+2N linear algebraic equations for those
undetermined coefficients, which results in an eigenvalue problem with the eigenvalues related to the natural
frequencies of plate. Similarly, utilizing Eq. (7), instead of Eqs. (5) and (6), in the above procedure yields
IJþNðN þ 3Þ linear algebraic equations for undetermined coefficients aij, Bnl and Cnl.

To accurately solve the eigenvalue problem, variables with 128-bit precision (with approximately 34 decimal
digit accuracy) were used in the developed computer programs. Computations with 128-bit precision can be
carried out using a regular PC with 64-bit operation system. The integrations needed in establishing solutions
were carried out using the subroutine ‘‘DTWODQ’’ in IMSL Library, which was converted to 128-bit
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precision from 64-bit precision. This subroutine uses the Gauss quadrature integration scheme proposed by
Piessens et al. [16].

3. Convergence studies

Because infinite terms of admissible functions form a mathematically complete set of functions, the Ritz
method yields solutions which converge to the exact solution from above as the number of admissible
functions is sufficiently large. Convergence studies were carried out for simply supported rectangular plates
with different crack lengths to verify the correctness of the solutions and demonstrate the effects of Wc on the
solutions. In Eq. (3) l;m; n, and q are set equal one to satisfy the geometric boundary conditions (zero
transverse displacement) along simply supported edges. The rectangular plates have side length ratio a/b ¼ 2
and a horizontal side crack at c/b ¼ 0.5 with different crack lengths (d), where a, b, c, and d are defined in
Fig. 1. Numerical results are presented for the first five nondimensional frequency parameters oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
.

Poisson’s ratio equal to 0.3 is considered for all the results shown here.
Tables 1–3 show the convergence studies of nondimensional frequency parameters for plates with crack

length d/a ¼ 0.2, 0.5 and 0.8, respectively. Corner functions given in Eqs. (5) and (6) were used for Wc(r,y). In
the first column of these tables parenthesized S and A denote symmetric and anti-symmetric modes,
respectively. These tables also list the published results by Stahl and Keer [3], Yuan and Dickinson [11], or
Liew et al. [12]. It should be noted that Stahl and Keer [3] used a very accurate Fredholm integration
approach. Yuan and Dickinson [11] took the advantages of the symmetry of problem and analyzed a half of
Table 1

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a simply supported rectangular plate having a central (c/b ¼ 0.5) side crack with

d/a ¼ 0.2 (using Wc defined by Eqs. (5) and (6)).

Mode no. N in Wc Order of polynomial (I� J) Published results

4� 4 5� 5 6� 6 7� 7 8� 8 9� 9

1(S) 0 49.36a 49.35a 49.35a 49.35 49.35 49.35 [49.0]

1 49.10a 49.03a 49.03 49.00 49.00 48.99 {49.04}

3 49.02a 49.00a 49.00 48.99 48.99 48.98 (49.05)

6 49.01a 49.00a 48.99 48.98 48.98 48.98

2(S) 0 79.07a 79.06a 78.96a 78.96 78.96 78.96 [77.87]

1 78.33a 78.14a 78.01 77.94 77.94 77.91 {78.04}

3 78.13a 78.03a 77.93 77.90 77.90 77.89 (78.08)

6 78.11a 77.94a 77.93 77.90 77.90 77.89

3(S) 0 164.3a 129.5a 129.5a 128.3 128.3 128.3 [126.6]

1 160.4a 127.9a 127.9 126.7 126.7 126.6 {126.8}

3 134.0a 127.9a 127.8 126.6 126.6 126.6 (126.9)

6 133.6a 126.8a 126.8 126.6 126.6 126.6

4(A) 0 168.4a 168.4a 167.8a 167.8 167.8 167.8 [167.1]

1 168.1a 168.1a 167.4 167.4 167.4 167.4 {167.2}

3 167.7a 167.7a 167.1 167.1 167.1 167.1 (167.2)

6 167.7a 167.2a 167.1 167.1 167.1 167.1

5(A) 0 198.0a 198.0a 197.4a 197.4 197.4 197.4 [194.0]

1 196.5a 196.2a 195.6 195.6 195.5 195.4 {194.4}

3 194.7a 194.7a 194.2 194.2 194.2 194.2 (194.7)

6 194.7a 194.6a 194.2 194.2 194.2 194.2

Note: [ ]: results from Stahl and Keer [3]; { }: results from Yuan and Dickinson [11]; and ( ): results from Liew et al. [12].
aComputations with 64-bit precision were used.



ARTICLE IN PRESS

Table 2

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a simply supported rectangular plate having a central (c/b ¼ 0.5) side crack with

d/a ¼ 0.5 (using Wc defined by Eqs. (5) and (6)).

Mode no. N in Wc Order of polynomial (I� J) Published results

4� 4 5� 5 6� 6 7� 7 8� 8 9� 9

1(S) 0 49.36 49.35 49.35 49.35 49.35 49.35 [40.4]

5 40.88 40.61 40.60 40.47 40.47 40.42 {41.27}

10 40.87 40.61 40.58 40.47 40.47 40.42 (41.62)

15 40.87 40.61 40.58 40.47 40.47 40.42

20 40.87 40.61 40.58 40.47 40.47 40.42

2(S) 0 79.07 79.06 78.96 78.96 78.96 78.96 [72.79]

5 73.25 72.95 72.94 72.86 72.86 72.82 {72.79}

10 73.22 72.94 72.92 72.86 72.85 72.82 (72.89)

15 73.22 72.94 72.92 72.86 72.85 72.82

20 73.21 72.94 72.92 72.86 72.85 72.82

3(A) 0 164.3 129.5 129.5 128.3 128.3 128.3 [73.63]

5 76.92 76.87 76.26 76.26 75.77 75.76 {74.63}

10 76.87 76.69 76.25 76.11 75.75 75.65 (76.55)

15 76.87 76.68 76.25 76.10 75.74 75.63

20 76.87 76.68 76.25 76.10 75.74 75.63

4(S) 0 168.4 168.4 167.8 167.8 167.8 167.8 [123.4]

5 130.0 124.7 123.8 123.5 123.5 123.5 {123.8}

10 129.9 123.9 123.7 123.5 123.5 123.5 (123.8)

15 129.9 123.9 123.7 123.5 123.5 123.5

20 129.9 123.9 123.7 123.5 123.5 123.5

5(A) 0 198.0 198.0 197.4 197.4 197.4 197.4 [168.6]

5 170.3 169.7 169.5 169.4 169.3 169.3 {169.7}

10 170.1 169.6 169.3 169.3 169.3 169.3 (170.5)

15 170.1 169.6 169.3 169.3 169.3 169.3

20 170.1 169.6 169.3 169.3 169.3 169.3

Note: [ ]: results from Stahl and Keer [3]; { }: results from Yuan and Dickinson [11]; and ( ): results from Liew et al. [12].
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plate only. They decomposed the domain under consideration into two subdomains and used 8� 8 terms of
orthogonal polynomials for each subdomain to construct the solution. Similar to the approach by Yuan and
Dickinson [11], Liew et al. [12] used 19� 9 terms of orthogonal polynomials for each subdomain. As
mentioned in the Introduction (Section 1), the solutions of Yuan and Dickinson [11] and Liew et al. [12] are
not guaranteed to be the upper bounds of true solutions.

In Table 1, the results with superscript ‘‘a’’ were obtained by using 64-bit precision in computations. When
computations with 64-bit precision were performed, using more than 7� 7 terms of polynomials with no
corner functions in the admissible functions yields ill-conditioned matrixes. Ill-conditioned matrixes also
occur when 6� 6 terms of polynomials with any corner functions were used. Computations with 128-bit
precision allow using a larger number of terms in admissible functions before ill-conditioned matrixes
occur. Notably, computations with these two different precisions yield identical solutions up to at least
six significant figures when the same admissible functions are used and numerical instability does not
occur.

Tables 1–3 disclose several interesting facts. Carefully examining the results with no Wc(r,y) (N ¼ 0) in
Table 1, one finds that the numerical results converge to the exact results for a simply supported intact
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Table 3

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a simply supported rectangular plate having a central (c/b ¼ 0.5) side crack with

d/a ¼ 0.8 (using Wc defined by Eqs. (5) and (6)).

Mode no. N in Wc Order of polynomial (I� J) Published results

4� 4 5� 5 6� 6 7� 7 8� 8 9� 9

1(S) 0 49.36 49.35 49.35 49.35 49.35 49.35 [29.9]

5 31.30 30.48 30.47 30.15 30.15 30.03 (30.50)

10 31.28 30.47 30.46 30.15 30.15 30.03

15 31.27 30.47 30.46 30.15 30.15 30.03

20 31.27 30.47 30.45 30.15 30.15 30.03

2(A) 0 79.07 79.06 78.96 78.96 78.96 78.96 [39.53]

5 44.83 44.81 43.49 43.48 42.68 42.68 (40.02)

10 44.80 44.79 43.48 43.48 42.67 42.66

15 44.80 44.79 43.48 43.47 42.66 42.66

20 44.80 44.79 43.47 42.66 42.66 42.65

3(S) 0 164.3 129.5 129.5 128.3 128.3 128.3 [68.20]

5 68.78 68.44 68.44 68.33 68.33 68.27 (68.82)

10 68.75 68.44 68.42 68.33 68.32 68.27

15 68.74 68.44 68.42 68.33 68.32 68.27

20 68.74 68.44 68.42 68.33 68.32 68.27

4(A) 0 168.4 168.4 167.8 167.8 167.8 167.8 [94.50]

5 96.77 96.64 96.40 96.39 96.09 96.09 (95.79)

10 96.72 96.59 96.35 96.32 96.03 96.03

15 96.72 96.58 96.35 96.32 96.02 96.02

20 96.72 96.58 96.35 96.02 96.02 96.01

5(S) 0 198.0 198.0 197.4 197.4 197.4 197.4 [120.2]

5 143.1 121.7 121.3 120.3 120.3 120.2 (120.3)

10 141.7 121.1 120.6 120.3 120.3 120.2

15 141.2 121.1 120.6 120.3 120.3 120.2

20 140.9 121.0 120.6 120.3 120.3 120.2

Note: [ ]: results from Stahl and Keer [3] and ( ): results from Liew et al. [12].
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rectangular plate [1]; that is, integer multiplies of p2. This observation is expected because existence of the side
crack cannot be recognized by the polynomial admissible functions (Eq. (4)) alone. Adding a small number of
terms in Wc(r,y) into the admissible functions significantly improves numerical solutions. Table 1
demonstrates that the numerical solutions converge very well for the case with a small crack (d/a ¼ 0.2).
Using I ¼ J ¼ 7 and N ¼ 3 (totally 55 terms) in the admissible function leads to at least three significant figure
convergence, and the convergent results show excellent agreement with those of Stahl and Keer [3]. The results
obtained by Yuan and Dickinson [11] and Liew et al. [12] are less accurate.

It should be noted that Stahl and Keer [3] gave the first frequency to only three significant figures. Their
solution required discretization of their integral equation. Consequently, they admitted that the fourth
significant figure of their other results ‘‘may not be accurate’’.

Table 2 shows that the convergence of results for the deeper crack (c/b ¼ 0.5) is not so good as that found in
Table 1. Using the results of Stahl and Keer [3] as a comparison basis, the present upper bound results
obtained by using I ¼ J ¼ 9 and N ¼ 15 (totally 121 terms) in admissible functions are all better than those
given by Liew et al. [12] and are better than those obtained by Yuan and Dickinson [11] for the first, fourth
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Table 4

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the same case as Table 1, but using Wc defined by Eq. (7).

Mode no. N in Wc Order of polynomial (I� J) Published results

4� 4 5� 5 6� 6 7� 7 8� 8

1(S) 2 49.01 48.98 48.98 48.97 48.97 [49.0]

3 48.97 48.97 48.97 48.97 48.97 {49.04}

4 48.97 48.97 48.97 48.97 48.97 (49.05)

2(S) 2 78.01 77.96 77.88 77.87 77.87 [77.87]

3 77.96 77.87 77.87 77.87 77.87 {78.04}

4 77.87 77.87 77.87 77.87 77.87 (78.08)

3(S) 2 129.4 127.3 127.3 126.6 126.6 [126.6]

3 127.3 127.3 126.8 126.6 126.6 {126.8}

4 127.3 126.8 126.6 126.6 126.6 (126.9)

4(A) 2 167.5 167.5 167.1 167.1 167.1 [167.1]

3 167.2 167.2 167.1 167.1 167.1 {167.2}

4 167.1 167.1 167.1 167.1 167.1 (167.2)

5(A) 2 194.5 194.5 194.1 194.1 194.1 [194.0]

3 194.4 194.4 194.0 194.0 194.0 {194.4}

4 194.1 194.1 194.0 194.0 194.0 (194.7)

Note: [ ]: results from Stahl and Keer [3]; { }: results from Yuan and Dickinson[11]; and ( ): results from Liew et al. [12].
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and fifth modes. Nevertheless, the agreement of the present results with those of Stahl and Keer is not so
impressive, especially for the third mode.

Table 3 displays that the convergence of the results for the deepest crack (c/b ¼ 0.8) is even slower than that
shown in Table 2. Although the results obtained by using I ¼ J ¼ 9 and N ¼ 20 (totally 131 terms) in
admissible functions are less than those of Liew et al. [12] in the first, third and fifth modes, these results are
still significantly larger than those of Stahl and Keer [3].

Using more terms than those shown in Tables 2 and 3 easily causes ill-conditioned matrices in the process of
computation. Moreover, when carefully examining the eigenvector components of the first five modes of the
present results, one finds that the eigenvector components corresponding to higher orders of r in Wc (say,
larger than 10) are remarkably smaller than those corresponding to lower orders of r. Intuitively, Eq. (7) was
proposed because the set of functions in Eq. (9) includes that of Eq. (8), and Eq. (7) has N̂ðN̂ þ 3Þ terms with
orders of r less than (or equal to) ð2N̂ þ 1Þ=2 while Eq. (6) only has 2N̂ terms.

Similar to the presentation in Tables 1–3, Tables 4–6 illustrate the corresponding convergence studies
by using Wc(r,y) defined in Eq. (7). Recall that adding Wc(r,y) defined by Eq. (6) or Eq. (7) into the
admissible functions always yields upper-bound solutions for natural frequencies. Eq. (7) gives signifi-
cantly better results than Eq. (6) does for the cases of d/a ¼ 0.5 and 0.8 if same number of terms are used
for Wc(r,y). This fact can be observed by comparing the results in Tables 5 and 6 obtained by using N ¼ 5
with those in Tables 2 and 3 with N ¼ 20, respectively. Notably, N ¼ 5 and N ¼ 20 yield 40 terms in Eqs. (7)
and (6), respectively. The resulting eigenvalue determinants to be evaluated are then of order 40+IJ.
Comparison of the results in Tables 1 and 4 discloses that Eq. (7) does not give significantly better results
than Eq. (6) does because Eq. (6) already provides excellent convergent solutions in the case of small
crack (d/a ¼ 0.2). Using Eq. (7) for the admissible functions otherwise considerably accelerates the
convergence of the numerical results, and the convergent results in Tables 4–6 agree excellently with those of
Stahl and Keer [3].
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Table 5

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the same case as Table 2, but using Wc defined by Eq. (7).

Mode no. N in Wc Order of polynomial (I� J) Published results

4� 4 5� 5 6� 6 7� 7 8� 8

1(S) 3 40.43 40.36 40.36 40.36 40.36 [40.4]

4 40.39 40.36 40.36 40.35 40.35 {41.27}

5 40.38 40.35 40.35 40.35 40.35 (41.62)

6 40.37 40.35 40.35 40.35 40.35

7 40.36 40.35 40.35 40.35 40.35

2(S) 3 72.92 72.80 72.79 72.78 72.78 [72.79]

4 72.85 72.78 72.78 72.78 72.78 {72.79}

5 72.83 72.78 72.78 72.78 72.78 (72.89)

6 72.82 72.78 72.78 72.78 72.78

7 72.82 72.78 72.78 72.78 72.78

3(A) 3 73.73 73.72 73.67 73.66 73.65 [73.63]

4 73.64 73.64 73.63 73.63 73.63 {74.63}

5 73.64 73.64 73.63 73.63 73.63 (76.55)

6 73.63 73.63 73.63 73.63 73.63

7 73.63 73.63 73.63 73.63 73.63

4(S) 3 124.0 123.8 123.7 123.5 123.5 [123.4]

4 123.7 123.6 123.5 123.4 123.4 {123.8}

5 123.6 123.5 123.4 123.4 123.4 (123.8)

6 123.5 123.5 123.4 123.4 123.4

7 123.5 123.5 123.4 123.4 123.4

5(A) 3 169.8 169.5 169.2 169.2 169.0 [168.6]

4 169.0 169.0 169.0 168.9 168.9 {169.7}

5 168.9 168.9 168.9 168.9 168.9 (170.5)

6 168.9 168.9 168.9 168.9 168.9

7 168.9 168.9 168.9 168.9 168.9

Note: [ ]: results from Stahl and Keer [3]; { }: results from Yuan and Dickinson [11]; and ( ): results from Liew et al. [12].
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4. Numerical results and discussion

After Eqs. (4) and (7) as admissible functions have been demonstrated to yield excellently convergent
solutions for a simply supported rectangular plate with a side crack, they were further applied to investigate
the vibration behaviors of simply supported and completely free square plates with side cracks at different
locations (c/b ¼ 0.5 and 0.75) with various lengths (d/a ¼ 0.1 to 0.6) and orientations (a ¼ 01, 151, and 301). In
Eq. (3) l;m; n, and q are set equal zero when a completely free plate is considered, for there are no geometric
boundary conditions then. Tables 7 and 8 display the nondimensional frequency parameters for the first five
nonzero frequency modes for simply supported and completely free square plates, respectively. Poisson’s ratio
is set equal to 0.3. The results for d/ap0.3 were obtained by using 7� 7 terms of polynomials along with
N ¼ 5 in Wc(r,y), which results in 89 admissible functions totally; while the results for d/aX0.4 were obtained
by using 8� 8 terms of polynomials and N ¼ 6 in Wc(r,y), which results in 118 functions totally. Other studies
not shown here indicate that the results have converged to at least 3-digit accuracy.

Looking first at the simply supported square plates (Table 7), one may begin by noting that the exact values
[1] of the first five frequency parameters with no crack are 19.74, 49.35, 49.35, 78.96 and 98.70 (np2, with n ¼ 2,
5, 5, 8, 10). It is seen that adding a small crack (d/a ¼ 0.1) causes very little change in any of the first five
frequencies. As expected, increasing crack length (d/a) results in decreasing frequencies, for all modes.
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Table 6

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the same case as Table 3, but using Wc defined by Eq. (7).

Mode no. N in Wc Order of polynomial (I� J) Published results

4� 4 5� 5 6� 6 7� 7 8� 8

1(S) 3 30.08 29.94 29.94 29.92 29.92 [29.9]

4 29.99 29.91 29.91 29.90 29.90 (30.50)

5 29.96 29.91 29.90 29.90 29.90

6 29.94 29.91 29.90 29.90 29.90

7 29.94 29.91 29.90 29.90 29.90

8 29.94 29.91 29.90 29.90 29.90

2(A) 3 39.92 39.88 39.84 39.84 39.82 [39.53]

4 39.69 39.65 39.62 39.62 39.62 (40.02)

5 39.59 39.58 39.57 39.56 39.56

6 39.57 39.56 39.55 39.55 39.55

7 39.56 39.55 39.55 39.55 39.54

8 39.56 39.55 39.54 39.54 39.54

3(S) 3 68.66 68.28 68.27 68.25 68.25 [68.20]

4 68.49 68.24 68.23 68.22 68.22 (68.82)

5 68.38 68.22 68.21 68.21 68.21

6 68.36 68.22 68.21 68.21 68.21

7 68.34 68.22 68.21 68.21 68.21

8 68.33 68.21 68.21 68.21 68.21

4(A) 3 96.66 96.38 95.85 95.80 95.69 [94.50]

4 94.87 94.70 94.66 94.66 94.64 (95.79)

5 94.63 94.62 94.59 94.59 94.59

6 94.57 94.56 94.56 94.55 94.54

7 94.54 94.54 94.53 94.53 94.53

8 94.53 94.53 94.53 94.53 94.52

5(S) 3 133.7 122.8 122.5 121.9 121.9 [120.2]

4 132.0 121.4 120.4 120.2 120.2 (120.3)

5 131.7 121.0 120.4 120.2 120.2

6 131.4 120.8 120.3 120.2 120.2

7 131.3 120.8 120.3 120.2 120.2

8 131.3 120.8 120.3 120.2 120.2

Note: [ ]: results from Stahl and Keer [3] and ( ): results from Liew et al. [12].
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For plates with centrally located cracks, parallel to the edges, the free vibration mode shapes are either
symmetric or antisymmetric to one axis (y ¼ b/2) of the plate. This is seen in the nodal patterns (lines of zero
displacement) shown in Fig. 2 when a ¼ 01 and c/b ¼ 0.5. In this case all modes are symmetric (e.g., modes 1, 2
and 5) or antisymmetric (e.g., modes 3 and 4) with respect to that plate axis. For the relatively short crack
(d/a ¼ 0.2) the node lines seen in Fig. 2 for the first four modes are almost identical to those of the plate with
no crack. The difference shows up more clearly for mode 5, where the two diagonal node lines, which are
perfectly straight with no crack, are distorted significantly.

When the crack is not at the center (e.g., c/b ¼ 0.75), Table 7 shows that the frequencies can be either
more or less affected by it, depending upon the modes. An off-center crack completely destroys any
symmetry, as may be seen in the lack of symmetry in the node lines of Fig. 2 (for example, with a ¼ 01,
c/b ¼ 0.75). For aa0�, Fig. 2 shows that the otherwise symmetrical node lines are further distorted. It is
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Table 7

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for simply supported square plates with side cracks at various orientations (a), locations (c/b) and

lengths (d/a).

a (degrees) c/b d/a Mode

1 2 3 4 5

0 0.5 0.1 19.74 49.34 49.35 78.95 98.63

0.2 19.70 49.19 49.33 78.78 97.88

0.3 19.54 48.77 49.09 77.18 95.69

0.4 19.20 47.80 48.24 71.27 92.23

0.5 18.65 43.42 47.92 64.40 88.08

0.6 17.96 36.45 47.86 62.24 83.78

0 0.75 0.1 19.74 49.33 49.35 78.91 98.67

0.2 19.72 49.08 49.34 78.40 98.30

0.3 19.62 48.15 49.23 76.96 96.95

0.4 19.38 46.34 48.74 75.18 87.28

0.5 18.88 44.07 47.32 68.85 76.03

0.6 18.10 41.65 44.52 58.84 75.30

15 0.75 0.1 19.73 49.32 49.35 78.92 98.66

0.2 19.68 49.04 49.34 78.50 98.36

0.3 19.51 48.24 49.29 77.23 97.17

0.4 19.15 46.97 48.88 74.82 86.37

0.5 18.56 45.47 47.09 65.76 77.42

0.6 17.79 40.54 45.61 58.76 76.03

30 0.75 0.1 19.72 49.31 49.35 78.94 98.61

0.2 19.64 49.03 49.35 78.69 98.03

0.3 19.44 48.33 49.30 77.78 96.12

0.4 19.07 47.39 48.89 75.12 87.14

0.5 18.50 46.50 46.67 66.22 79.56

0.6 17.78 39.99 46.38 60.77 77.66
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also interesting to note in Fig. 2 that node lines may intersect a crack and, in some cases, even the tip of a
crack.

Considering next the completely free square plate, nondimensional frequencies are given in Table 8, and
corresponding nodal patterns are shown in Fig. 3. Because the nodal patterns for the free plate with no crack
are less obvious than those of the simply supported one, they are shown additionally in the first row (d/a ¼ 0)
of Fig. 3. Notably, the first five nonzero nondimensional frequency parameters for a completely free intact
square plate are 13.47, 19.61, 24.28, 34.82, 34.82 [17]. The authors know of no other published frequencies or
nodal patterns for free square plates with cracks.

Comparing Tables 7 and 8, one sees that the presence of an edge crack affects the fundamental (i.e., lowest)
frequency of the free plate much more than that of the simply supported one. The fundamental mode shape of
the free plate with no crack is antisymmetric, whereas for the simply supported one it is symmetric. But this
effect does not extend to the other modes of the plates; that is, symmetric mode frequencies in some cases are
more greatly affected by a crack than the antisymmetric modes.

5. Concluding remarks

This paper has illustrated a novel Ritz method to accurately determine the natural frequencies of a
rectangular plate with a side crack. A new set of functions has been proposed to supplement the regular
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Table 8

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a completely free square plate with a side crack.

a (degrees) c/b d/a Mode

1 2 3 4 5

0 0.5 0.1 13.31 19.41 24.08 34.19 34.24

0.2 12.72 18.83 23.55 32.07 33.13

0.3 11.58 17.77 22.89 28.48 32.30

0.4 9.956 16.35 22.35 25.16 31.95

0.5 8.249 14.77 21.97 23.10 31.90

0.6 6.761 13.22 21.74 21.82 31.87

0 0.75 0.1 13.36 19.53 24.20 34.20 34.66

0.2 12.97 19.25 23.87 31.60 34.31

0.3 12.11 18.43 22.83 27.75 33.92

0.4 10.56 16.79 21.59 25.91 33.57

0.5 8.642 15.30 21.10 25.06 33.23

0.6 6.922 14.25 20.95 24.25 32.65

15 0.75 0.1 13.36 19.51 24.20 34.22 34.63

0.2 12.97 19.11 23.85 31.81 34.15

0.3 12.14 17.92 23.07 28.20 33.57

0.4 10.70 15.92 22.36 25.94 33.13

0.5 8.902 14.19 22.04 24.61 32.84

0.6 7.239 12.86 21.85 23.54 32.32

30 0.75 0.1 13.38 19.51 24.20 34.31 34.63

0.2 13.04 19.06 23.87 32.29 34.04

0.3 12.35 17.68 23.24 28.95 33.28

0.4 11.12 15.45 22.67 26.37 32.69

0.5 9.384 13.59 22.18 24.85 32.36

0.6 7.650 12.23 21.50 24.06 32.10
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polynomial admissible functions in order to significantly accelerate the convergence of the numerical solutions
from the upper-bound. The proposed set of functions appropriately describes the behaviors of stress
singularities at the crack tip and shows the discontinuities of displacement and slope crossing the crack, which
may be the characteristics of a true solution.

The effects of the proposed set of functions on determining the frequencies of a side-cracked plate have
been comprehensively investigated through careful convergence studies for simply supported plates with
horizontal side cracks having different crack lengths. The proposed set of functions demonstrates the
superiority to the corner functions derived from Williams’ solutions on improving the convergence
of solutions, especially for a large crack. Furthermore, the present solutions show better accuracy
than the previously published ones obtained by the Ritz method with different domain decomposition
techniques.

Accurate frequencies and nodal patterns have been tabulated for simply supported and completely free
square plates having side cracks at different locations (c/b ¼ 0.5 and 0.75), with various lengths (d/a ¼ 0.1 to
0.6) and orientations (a ¼ 01, 151, and 301). The shown frequencies are accurate to at least three significant
figures. Most of these results are the first ones shown in the published literature.

Although only side-cracked rectangular plates with simply supported and completely free boundary
conditions are considered, the present methodology can be applied to plates with other shapes and boundary
conditions. It will be also interesting to extend the methodology with a simple modification to determine the
stress intensity factors of a plate subjected to different loads.
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Fig. 2. Nodal patterns for a simply supported square plate with a side crack.
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Fig. 3. Nodal patterns for a completely free square plate with a side crack.
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